Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C (Q90119243)

From Wikidata
Jump to navigation Jump to search
scholarly article
  • Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (similar to 12.8 ka): High-temperature melting at > 2200 degrees C
edit
Language Label Description Also known as
English
Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C
scholarly article
  • Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (similar to 12.8 ka): High-temperature melting at > 2200 degrees C

Statements

Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C (English)
22 page
0 references
1 reference
This article is licensed under a Creative Commons Attribution 4.0 International License (English)
1 reference
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License (English)
unknown value
Moore, A. M. T., Hillman, G. C. & Legge, A. J. Village on the Euphrates: from foraging to farming at Abu Hureyra. 585 (Oxford University Press, 2000).
0 references
unknown value
Heide, K. & Heide, G. Vitreous state in nature—Origin and properties. Chem Erde 71, 305–335 (2011).
0 references
unknown value
Gurov, E. P., Permiakov, V. & Koeberl, C. Chromferide Found in Impact Melt Rocks of the El’gygytgyn Crater, Chukotka, Russia. 50th Lunar and Planetary Science Conference 2019 (2019).
0 references
unknown value
Ebel, D. S. & Grossman, L. Condensation in dust-enriched systems. Geochim Cosmochim Acta 64, 339–366 (2000).
0 references
unknown value
Eliopoulos, D. G., Economou-Eliopoulos, M., Apostolikas, A. & Golightly, J. P. Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geol Rev 48, 413–427 (2012).
0 references
unknown value
Koeberl, C. The geochemistry and cosmochemistry of impacts. Planets, Asteriods, Comets And The Solar System, 73–118 (2014).
0 references
unknown value
Sheffer, A. & Melosh, H. J. Why Moldavites are reduced. 36th Annual Lunar and Planetary Science Conference (2005).
0 references
unknown value
Hikichi, Y. & Nomura, T. Melting Temperatures of Monazite and Xenotime. J Am Ceram Soc 70, 252–253 (1987).
0 references
unknown value
Crawford, D. A. & Schultz, P. H. Laboratory investigations of impact-generated plasma. Journal of Geophysical Research: Planets 96, 18807–18817 (1991).
0 references
unknown value
Kletetschka, G., Wasilewski, P. J., Kohout, T., Adachi, T. & Mikula, V. Protocol for first order paleofields estimation. Meteorit Planet Sci 41, A97-A97 (2006).
0 references
unknown value
Newman, S., Stolper, E. M. & Epstein, S. Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. American Mineralogist 71, 1527–1541 (1986).
0 references
unknown value
Zhang, Y., Martin, A., Berndt, H., Lücke, B. & Meisel, M. FTIR investigation of surface intermediates formed during the ammoxidation of toluene over vanadyl pyrophosphate. Journal of Molecular Catalysis A: Chemical 118, 205–214 (1997).
0 references
unknown value
Hermes, R. E. & Strickfaden, W. B. J. A new look at trinitite. Nucl Weap J. 2, 2–7 (2005).
0 references
unknown value
Schultz, P. H. et al. The record of Miocene impacts in the Argentine Pampas. Meteoritics & Planetary Science 41, 749–771 (2006).
0 references
unknown value
Harris, R., Schultz, P. & King, P. The fate of water in melts produced during natural and experimental impacts into wet, fine-grained sedimentary targets in Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process. 57–58 (2007).
0 references
unknown value
Koeberl, C. Geochemistry and origin of Muong Nong-type tektites. Geochim Cosmochim Acta 56, 1033–1064 (1992).
0 references
unknown value
Schultz, P. et al. Late Pleistocene Fireballs Over the Atacama Desert, Chile. Lunar and Planetary Science Conference 50 (2019).
0 references
unknown value
Harris, R. & Schultz, P. When Rubble Piles Attack: The Menagerie of Microscopic Meteorite Debris in Pica Impact Glass. Lunar and Planetary Science Conference 50 (2019).
0 references
unknown value
Thackeray, J. F. & Scott, L. The Younger Dryas in the Wonderkrater sequence, South Africa? Annals of the Transvaal Museum 43, 111–112 (2006).
0 references
unknown value
Napier, W. M. The influx of comets and their debris in Accretion of Extraterrestrial Matter Throughout Earth’s History (eds. Peucker-Ehrenbrink, B. & Schmitz, B.) 51–74 (Springer, 2001).
0 references

Identifiers

 
edit
    edit
      edit
        edit
          edit
            edit
              edit
                edit
                  edit